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Abstract
An averaging procedure in phase plane is developed leading to orthonormality
of coherent states on a von Neumann lattice. These states correspond to entire
unit cells of area h (Planck constant) in the phase plane and they can be specified
by (mb, n 2π

b
h̄), where m and n are integers and b is a constant related to the

spread of the harmonic oscillator ground state. The product of uncertainties
for the co-ordinate x and momentum p in these states is very close to h̄. This
is by a factor of 2π smaller than the unit cell area, and makes it, in principle,
possible to measure simultaneously x and p for the location of a unit cell in the
phase plane.

PACS numbers: 0365S, 0365, 4250A

Since their discovery by Schrödinger [1], coherent states have been widely used in many fields
of physics [2–5]. A discrete subset of coherent states was introduced by von Neumann [6],
by assigning a single state to a unit cell of area h (Planck constant) in the phase plane [7].
Being coherent states the von Neumann states are non-orthogonal and attempts to make them
orthogonal have led to the Balian–Low theorem [8–10] according to which one can modify
the coherent states in the von Neumann set in order to make them orthogonal but for the
modified states the product �x �p of the uncertainties diverges, which actually means that
they completely lose their classical nature. In building his set von Neumann has chosen a
single coherent state in each unit cell. Such a state is labelled by (mb, n 2π

b
h̄), for the x and

p co-ordinates in the phase plane and with b being an arbitrary constant. This is also the label
for the unit cell. But in each unit cell there is an infinite number of coherent states, which
means that there is much freedom in building different von Neumann sets. In this letter we use
this freedom and we develop an averaging procedure for constructing states that are related
to an entire (mb, n 2π

b
h̄)-cell in the phase plane. This procedure leads to very striking and

previously unachievable results. The most important among them being the orthonormality of
the coherent states when averaged over a unit cell of area h in the phase plane. We use this
averaging procedure for calculating the matrix elements of x and p and for their uncertainties
�x and�p in these states. It turns out that the expectation values x and p are correspondingly
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x = mb and p = n 2π
b
h̄ in these states, while �x �p (the product of uncertainties) for

them is very close to h̄, meaning that they preserve their classical nature. Having established
the orthonormality of coherent states on a von Neumann lattice, we also define a probability
distribution |〈m, n|ψ〉|2 for any state vector |ψ〉. This distribution is obtained by the above
averaging procedure over a unit cell of the Husimi function [11, 12].

When dealing with coherent states the shift operator

D(α) = exp(αa+ − α∗a) = exp

[
i

h̄
(xp − px)

]
(1)

is of much importance. Here a is the annihilation operator (a+ is the creation operator which
is a Hermitian conjugate to a), whose eigenstates |α〉 are the coherent states

a|α〉 = α|α〉 (2)

where

a = 1

λ
√

2

(
x + i

λ2

h̄
p

)
α = 1

λ
√

2

(
x + i

λ2

h̄
p

)
. (3)

λ in equation (3) is a constant which generally appears in the harmonic oscillator states
(λ2 = h̄

mω
). A convenient way to write a coherent state is

D(α)|0〉 = |α〉 (4)

where D(α) is the shift operator in equation (1) and |0〉 is the ground state of a harmonic
oscillator. The coherent states are known to be non-orthogonal

|〈α|α′〉|2 = exp(−|α − α′|2) (5)

and highly overcomplete [3]. The von Neumann discrete subset of coherent states

D(αmn)|0〉 = |αmn〉 (6)

with

αmn = 1

λ
√

2

(
ma + i

2π

a
λ2n

)
m, n = 0,±1,±2, . . . (7)

on the von Neumann lattice in the phase plane, is still complete (actually overcomplete by one
state [5, 13, 14]), but clearly also non-orthogonal for αmn 
= αm′n′ . One can build infinitely
many non-equivalent von Neumann sets in the following way:

D(αmn)D(β)|0〉 and the ‘bra’: 〈0|D(−β)D(−αmn) (8)

where

β = 1

λ
√

2

(
X +

i λ2

h̄
P

)
and − b

2
� X � b

2
− π

b
h̄ � P � π

b
h̄. (9)

Here X and P are confined to the zero unit cell of the von Neumann lattice. We now use this
freedom to prove orthonormality of the von Neumann set when averaged over a unit cell in the
phase plane. Namely,

1

h

∫ ∫
〈0|D(−β)D(−αmn)|D(αm′n′)D(β) |0〉 dX dP = δmm′ δnn′ . (10)

Equation (10) is easiest to prove using the kq-representation [15], in which the ground state
of a harmonic oscillator is

〈kq|0〉 =
(

b

2 λπ3/2

)1/2

exp

(
− q2

2 λ2

)
θ3(z|τ) (11)
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with z = kb
2 − i

2
bq

λ2 , τ = i b2

2π λ2 . In equation (11) θ3(z|τ) is a Jacobi theta function [16]. The
convenience of using the kq-representation stems from the fact that in it the von Neumann set
in equation (6) assumes the simple form [7]

D(αmn) 〈kq|0〉 = (−1)mn exp

(
−ikbm + iq

2π

b
n

)
〈kq|0〉. (12)

In the kq-representation, the left-hand side of equation (10) becomes

(−1)mn+m′n′

h

∫
exp

[
−ikb(m′ −m) + iq

2π

b
(n′ − n)

]
|D(β)〈kq|0〉|2 dX dP dk dq. (13)

The application of the shift operatorD(β) (equation (1)) to any kq-function will shift k to k− P
h̄

and q to q−X (a phase will also be added). In equation (13) the function |〈k− P
h̄
, q−X|0〉|2

is periodic in all four arguments. This means that from the normalization of 〈kq|0〉 it follows
that ∫ ∫ ∣∣∣∣

〈
k − P

h̄
, q −X

∣∣∣∣0
〉∣∣∣∣

2

dX dP = h̄. (14)

The remaining integration over k and q in equation (13) completes the proof of equation (10).
It should be pointed out that in no place was the fact used that the starting state was 〈kq|0〉.
This means that no matter with what normalized square integrable state 〈kq|ψ〉 one starts, the
von Neumann set (equation (12)) will be orthonormal when averaged over a unit cell in the
phase plane. This demonstrates the universality of the averaging procedure over a unit cell of
area h in the phase plane.

Having determined in what sense the coherent states are orthonormal, we now use the same
averaging procedure for operators. In what follows we show how to calculate the matrices on
a von Neumann lattice for the fundamental operators x and p. A straightforward result is

〈0|D(−β)D(−αmn)| a |D(αm′n′)D(β)|0〉
= (αm′n + β)〈0|D(−β)D(−αmn)|D(αm′n′)D(β)|0〉 (15)

and a similar result for the creation operator a+. Using the expressions for x and p by means
of a and a+ and by averaging over the unit cell we find

1

h

∫ ∫
〈0|D(−β)D(−αmn)| x |D(αm′n′)D(β)|0〉 dX dP = ma δmm′ δnn′ +Xmn,m′n′ (16)

1

h

∫ ∫
〈0|D(−β)D(−αmn)|p |D(αm′n′)D(β)|0〉 dX dP = n

2π

a
h̄ δmm′ δnn′ + Pmn,m′n′ (17)

where

Xmn,m′n′ = 1

h

∫ ∫
X〈0|D(−β)D(−αmn)|D(αm′n′)D(β)|0〉 dX dP (18)

Pmn,m′n′ = 1

h

∫ ∫
P 〈0|D(−β)D(−αmn)|D(αm′n′)D(β)|〉 dX dP . (19)

Assuming, by definition, that the integration overX is from − b
2 to b

2 and over P from −π
b
h̄ to

π
b
h̄, we immediately see thatXmn,m′n′ and Pmn,m′n′ have no diagonal elements. Our averaging

procedure therefore gives results for the expectation values x and p of the co-ordinate and the
momentum

x = mb p = n
2π

b
h̄ (20)

that were anticipated by von Neumann when he first introduced his discrete set of coherent
states almost 70 years ago [6]. The discrete values of the x and p spectra on the phase plane
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in equation (20) express their commutative parts, and they label the different cells. As we
are going to show now, the non-diagonal elements in equations (18) and (19) can be easily
calculated; they are small and they lead to an uncertainty product �x �p of the order of h̄.

For finding Xmn,m′n′ , Pmn,m′n′ we have to calculate an integral of the form (see
equation (13))

I = 1

h

∫ ∫
L |D(β)〈kq|0〉|2 dX dP (21)

where L can be either X or P . When L = X, then using the expression in equation (11), the
integration over P becomes trivial, and we get for I in equation (21) the expression

I = 1

2π

(
1

π λ2

)1/2 ∫ b/2

−b/2
X exp

(
− (q −X)2

λ2

)
θ3

(
i(q −X)b

λ2

∣∣∣∣∣ 2τ

)
(22)

where τ is given in the line following equation (11). The integrand in equation (22) is periodic
in q, which is not seen directly, but becomes evident after performing a Jacobi imaginary
transformation [16] on the θ3-function. We then have for I in equation (22)

I = 1

2π

∫ b/2

−b/2
X θ3

(
π(q −X)

b

∣∣∣∣∣ i
π λ2

b2

)
dX (23)

with the integrand now demonstratively periodic in q and we obtain the following final result

Xmn,m′n′ = −i δmm′
b

2π

(−1)(m+1)(n′−n)

n′ − n
exp

[
−π

2 λ2

b2
(n′ − n)2

]
. (24)

In exactly the same way we find for the momentum

Pmn,m′n′ = i δnn′
h̄

b

(−1)(n+1)(m′−m)

m′ −m
exp

[
− b2

4λ2
(m′ −m)2

]
. (25)

Before interpreting the results in equations (24) and (25), let us first calculate the
uncertainties�x and�p. We already have the expectation values x and p (see equation (20)).
We then need to calculate (x2) and (p2). For this we have to calculate the integral

1

h

∫ ∫
〈0|D(−β)D(−αmn)|L2|D(αmn + β)|0〉 dX dP (26)

where now L is either x or p. The calculation of the uncertainties is entirely elementary (we
just use the expressions of x and p via the annihilation and creation operators) and the results
are

(�x)2 = λ2

[
1

12

(
b

λ

)2

+
1

2

]
(�p) = h̄2

λ2

[
4π2

12

(
λ

b

)2

+
1

2

]
. (27)

As is easily seen, the product of the uncertainties depends on the ratio ( b
λ
) only. Assuming that

λ is fixed for the ground state of the harmonic oscillator, we look for the value of the constant b
at which �x �p becomes a minimum, and the value (�x �p)min of the minimum. The result
is

b = λ
√

2π and (�x �p)min = 2π + 6

12
h̄ ≈ h̄. (28)

This result is very interesting. It shows that the minimum is achieved for b = λ
√

2π , which
is the case of a square lattice [7]. For this value of b the spread of �x �p is very close to
h

2π , which is by the factor 2π smaller than the area of the unit cell h. This means that our
averaging procedure should enable one to distinguish experimentally between unit cells in



Orthonormal coherent states on von Neumann lattices 1067

the phase plane, and thus measure simultaneously the co-ordinate (mb) and the momentum
(n 2π

b
h̄) of a single unit cell. A verification for this is also obtained from the expressions for

the matrix elements for x and p (equations (16), (17), (24) and (25)). For b = λ
√

2π the
exponent in the off-diagonal elements is the same in both equations and equals exp(−π

2 ). This
means that the largest off-diagonal elements (for n′ − n = ±1 and m′ − m = ±1) are by a
factor of

exp(− π
2 )

2π (close to 20) smaller than the diagonal ones. One can therefore consider in
the lowest approximation the matrices for x and p (equations (16) and (17)) as diagonal with
mb and n 2π

b
h̄ respectively on the diagonals.

We would like to point out that the averaging procedure developed here differs from the
ideas commonly used in the literature [17,18] on simultaneous measurements of co-ordinates
and momentum. While our procedure is a direct arithmetical averaging on a unit cell of the
von Neumann lattice, the previously used approach to the problem [17,18] is usually based on
phase space distributions, like the Wigner [19] or the Husimi [11] distribution functions.

The unit cell averaging procedure can also be used for defining a probability distribution
on the von Neumann lattice for any state |ψ〉:

|ψ(m, n)|2 = 1

h

∫ ∫
|〈0|D(−β)D(−αmn)|ψ〉|2 dX dP . (29)

This definition is nothing else but the Husimi function [11] averaged on the unit cell of a
von Neumann lattice. Having orthogonalized the coherent states, the quantity |ψ(m, n)|2 is
now the probability for a system described by |ψ〉 to be found in the (mb, n 2π

b
h̄)-unit cell on the

phase plane. Calculations of |ψ(m, n)|2 are straightforward because 〈0|D(−β)D(−αmn)|ψ〉
is directly related to the Bargmann representation [20], on which there has been much
information [2–5], and we will not deal with them here. Instead, let us write the scalar
product entering equation (29) in the kq-representation

(−1)mn〈0|D(−β)D(−αmn)|ψ〉 =
∫

[D(β)〈kq|0〉]∗C(k, q) exp

(
ikbm− iq

2π

b
n

)
dk dq

(30)

where C(k, q) is the kq-transform of |ψ〉. In signal processing the quantity in equation (30)
is called a windowed Fourier transform [21]. By inverting equation (30) we have

[D(β)〈kq|0〉]∗C(k, q) = 1

2π

∑
m,n

(−1)mn〈0|D(−β)D(−αmn)ψ〉 exp

(
−ikbm + iq

2π

b
n

)
(31)

which is a Fourier expansion of the periodic function [D(β)〈kq|0〉]∗C(k, q) in k with period
2π
a

and in q with period a. It follows∑
mn

|〈0|D(−β)D(−αmn)|ψ〉|2 = 2π
∫

|D(β)〈kq|0〉|2 |C(k, q)|2 dk dq. (32)

Averaging both sides of equation (32) over the unit cell in phase plane gives (see equation (29))∑
mn

|ψ(m, n)|2 = 1

h

∫ ∫ ∑
mn

|〈0|D(−β)D(−αmn)|ψ〉|2 dX dP = 1. (33)

With the sum of the squares summing up to 1, this is another indication that |ψ(m, n)|2 is a
probability distribution over the discrete set of unit cells in the phase plane.

The expansion in equation (31) can be used for finding the function C(k, q) (if
the expansion coefficients 〈0|D(−β)D(−αmn)ψ〉 are known) by dividing both sides of
equation (31) by [D(β)〈kq|0〉]∗. A difficulty arises becauseD(β)〈kq|0〉 (like every continuous
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− b
2

− 7b
16

0

7b
16

− 4b
16

10b
16

b
2

q

Figure 1. Intervals on the q-axis where 〈k, q|0〉 (open bar) and the shifted one 〈k, q− 3b
16 |0〉 (shaded

bar) have no zeros for any value of k. These intervals cover the range of 17b
16 which exceeds the

period b of the q co-ordinate.

kq-function) has a zero at some point in the unit cell [7, 22, 23]. Thus, 〈kq|0〉 has a zero at
k = π

b
, q = b

2 . But in the expansion in equation (31) we have the shift operatorD(β) that can
be used as a tool for shifting the zero. Thus, for β = 1

λ
√

2
3b
16 , the functionD( 1

λ
√

2
3b
16 )〈kq|0〉 has

a zero at ( π
b
, 11b

16 ). With the shift operator in our disposal, one can avoid the zero by carrying
out the expansion in equation (31) in two overlapping intervals on the q axis and for any k

Interval (1) − 7b

16
� q � 7b

16

Interval (2) − 4b

16
� q � 10b

16
.

(34)

These intervals are plotted in figure 1, where interval (1) is for 〈kq|0〉 and interval (2) for
〈k, q − 3b

16 |0〉. Equation (31) can therefore serve for finding the function C(k, q) from the
coefficients 〈0|D(β)D(αmn)ψ〉 for the two intervals with β = 0 and 1

λ
√

2
3b
16 (see equations (1)

and (9) and figure 1).
In summary, we have developed an averaging procedure making the coherent states on a

von Neumann lattice orthonormal.
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